zag-1, a Zn-finger homeodomain transcription factor controlling neuronal differentiation and axon outgrowth in C. elegans.

نویسندگان

  • Irene Wacker
  • Valentin Schwarz
  • Edward M Hedgecock
  • Harald Hutter
چکیده

The nervous system consists of diverse subtypes of neurons, whose identities must be specified during development. One important aspect of the differentiation program of neurons is the expression of the appropriate set of genes controlling axon pathway selection. We have identified a novel Znfinger/homeodomain containing transcription factor, zag-1, required for particular aspects of axonal pathfinding. In zag-1 mutants, motorneuron commissures either branch prematurely or fail to branch at the correct point. Ventral cord interneurons show defects in the guidance towards the ventral cord and also in the ventral cord. Several neurons misexpress differentiation markers, including glutamate receptor subunits and chemosensory receptors. zag-1 is expressed transiently in embryonic and postembryonic neurons during differentiation as well as in some mesodermal tissues. Null mutants of zag-1 are unable to swallow food and die as L1 larvae with a starved appearance, indicating that zag-1 has an additional role in pharynx development. The vertebrate homolog, deltaEF1, is highly conserved and known to act as transcriptional repressor in various tissues. Our data indicate that zag-1 also acts as transcriptional repressor controlling important aspects of terminal differentiation of neurons.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

C. elegans ZAG-1, a Zn-finger-homeodomain protein, regulates axonal development and neuronal differentiation.

Neurons acquire distinct cell identities and implement differential gene programs to generate their appropriate neuronal attributes. On the basis of position, axonal structure and synaptic connectivity, the 302 neurons of the nematode Ceanorhabditis elegans are divided into 118 classes. The development and differentiation of many neurons require the gene zag-1, which encodes a deltaEF1/ZFH-1 Zn...

متن کامل

The C. elegans even-skipped homologue, vab-7, specifies DB motoneurone identity and axon trajectory.

Locomotory activity is defined by the specification of motoneurone subtypes. In the nematode, C. elegans, DA and DB motoneurones innervate dorsal muscles and function to induce movement in the backwards or forwards direction, respectively. These two neurone classes express separate sets of genes and extend axons with oppositely directed trajectories; anterior (DA) versus posterior (DB). The DA-...

متن کامل

Regulation of C. elegans Neuronal Differentiation by the ZEB-Family Factor ZAG-1 and the NK-2 Homeodomain Factor CEH-28

The C. elegans pharyngeal neuron M4 is a multi-functional cell that acts as a cholinergic motor neuron to stimulate peristaltic pharyngeal muscle contraction and as a neuroendocrine cell secreting neuropeptides and growth factors to affect other cells both inside and outside the pharynx. The conserved transcription factors ZAG-1 and CEH-28 are co-expressed in M4 through most of development, and...

متن کامل

The SWI/SNF chromatin remodeling complex selectively affects multiple aspects of serotonergic neuron differentiation.

Regulatory programs that control the specification of serotonergic neurons have been investigated by genetic mutant screens in the nematode Caenorhabditis elegans. Loss of a previously uncloned gene, ham-3, affects migration and serotonin antibody staining of the hermaphrodite-specific neuron (HSN) pair. We characterize these defects here in more detail, showing that the defects in serotonin an...

متن کامل

UNC-39, the C. elegans homolog of the human myotonic dystrophy-associated homeodomain protein Six5, regulates cell motility and differentiation.

Mutations in the unc-39 gene of C. elegans lead to migration and differentiation defects in a subset of mesodermal and ectodermal cells, including muscles and neurons. Defects include mesodermal specification and differentiation as well a neuronal migration and axon pathfinding defects. Molecular analysis revealed that unc-39 corresponds to the previously named gene ceh-35 and that the UNC-39 p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 130 16  شماره 

صفحات  -

تاریخ انتشار 2003